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Abstract

In this paper, a fractional step method combined with an Eulerian–Lagrangian localized adjoint method (ELLAM) is
proposed to solve high-dimensional convection–diffusion problems. The method reduces high-dimensional problems to a
series of uncoupled one-dimensional problems in each time step interval, in which one-dimensional ELLAM is used to
solve the one-dimensional splitting equations. The approach takes the attractive advantages of the ELLAM method
and the fractional step technique. It reduces computational complexities, large memory requirements, and long computa-
tion durations due to the application of the splitting technique. It reduces temporal errors and generates accurate numer-
ical solutions even if large time and coarse spatial step sizes are used in computation. It effectively eliminates non-physical
oscillation or excessive numerical dispersion and treats boundary conditions well and in a natural way. Numerical exper-
iments show the efficient performance of the approach.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Unsteady convection–diffusion equations that involve a combination of advection and diffusion dynam-
ical processes are among the most widespread in various areas of science and technology, e.g., heat and
mass transfer, oil reservoir simulation, groundwater modelling, and aerodynamics and physiology (see,
for example [1,2,11,21]). In many such applications, the convection terms essentially dominate the diffusion
terms, which leads to a nearly hyperbolic set of governing partial differential equations. The numerical
approximation to the problems presents a challenging computational task. It is well documented that
when the governing equation is convection-dominated, many standard numerical methods developed for
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diffusion-dominated processes often exhibit some combination of difficulties ranging from non-physical
oscillations (central difference/Galerkin scheme) to excessive numerical diffusions (upstream scheme) at
steep fronts.

Many works have been done to overcome these difficulties and to allow accurate numerical solutions
with reasonable computational efforts. One class of approximations is the Eulerian method. In the frame-
work of the Eulerian approach, the traditional finite difference and finite element methods are improved,
e.g., the flux corrected transport scheme, total variation diminishing scheme, streamline-upwind Petrov–
Galerkin method, and optimal test function method. However, the methods in the Eulerian framework
are limited by Courant number restrictions. A second class of approximations is based on treatment of
the hyperbolic part by the Lagrangian method, in which the remainder of the equation is treated by an
Eulerian-type approximation. While these methods reduce temporal errors and overcome the Courant
number restrictions, most of them do not conserve mass. To overcome the limitations associated with
these Eulerian–Lagrangian approximations, Celia et al. [4] proposed the Eulerian–Lagrangian localized
adjoint method (ELLAM) for one-dimensional convection–diffusion problems. The ELLAM formulation
provides a general characteristic solution procedure and a consistent framework for conserving mass
and treating boundary conditions. It overcomes the principal shortcoming of some characteristic methods
while maintaining their numerical advantages. It reduces temporal errors and therefore allows for large
time step sizes in computation without the loss of accuracy, and is highly resistant to numerical dispersion
in the presence of small dispersivities. This method is an accurate and efficient solver of the linear convec-
tion-dominated diffusion problems with large Courant numbers. The further study of the ELLAM has
been successfully taken for high-dimensional problems by Binning and Celia [3], Healy and Russell [13],
and Wang et al. [26]. Furthermore, the ELLAM technique combined with the mixed finite element method
has successfully been developed to solve the miscible fluid flows in porous media with point sources and
sinks in [27,28], which can accurately simulate incompressible and compressible fluid flows in porous media
for oil reservoir simulation, as well as for the highly compressible multicomponent fluid flows in porous
media.

Due to the complexities and huge computational costs in realistic long term and large scale simulations,
there is strong interest in developing an efficient solution technique. This motivates us to study a fractional
step ELLAM method (FS-ELLAM) to solve multi-dimensional convection–diffusion problems. The fractional
step method is an efficient numerical technique for solving multi-dimensional parabolic problems (see, for
example [5,6,8–10,12,14,16,17,19,23–25]). For multi-dimensional problems, when the spatial discretization
step sizes are decreased, the number of unknowns of the algebraic equation system arising from the discret-
ization procedure will increase quickly, which leads to rapid increase in computer memory and CPU time.
The fractional step method reduces multi-dimensional problems to a series of uncoupled one-dimensional
problems, which results in very low execution time and storage. In this paper, we combine a fractional step
method with the ELLAM method to develop a fractional step ELLAM (FS-ELLAM) approach for two-
dimensional unsteady convection–diffusion problems. In the framework of the fractional step method, we split
the two-dimensional convection–diffusion problem into two uncoupled one-dimensional convection–diffusion
equations in every time step interval. Then, at each time level, we apply the ELLAM method to solve the one-
dimensional subproblems, which simulates accurately the corresponding sub-dimensional equations. The
developed FS-ELLAM approach takes the advantages of both the ELLAM method and the fractional step
method. It reduces temporal errors and eliminates non-physical oscillation and excessive numerical diffusion.
It generates an accurate numerical solution even if large time and coarse spatial step sizes are used. It also
treats boundary conditions effectively. Because of the application of the fractional step technique, the FS-
ELLAM approach reduces the computation duration and the requirement of large memory in simulation.
Numerical experiments show the efficient performance of the developed FS-ELLAM approach. The technique
can be easily applied to three-dimensional large-scale convection–diffusion problems and the procedure can be
solved by parallel computing systems.

This paper is organized as follows. In Section 2, we introduce the mathematical model and the fractional
step technique. Then, we propose the fractional step ELLAM approach for two-dimensional convection–dif-
fusion problems in Section 3. Numerical experiments are given and analysed in detail in Section 4. Finally,
some conclusions are addressed in Section 5.
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2. Mathematical model and fractional step technique

2.1. The mathematical model

We consider the following unsteady convection–diffusion problem:
oc
ot þrð~ucÞ � rðDrcÞ ¼ f ðx; y; tÞ; ðx; y; tÞ 2 X� ð0; T �; ð1Þ
cðx; y; tÞ ¼ ginðx; y; tÞ; ðx; y; tÞ 2 Cin � ð0; T �; ð2Þ
Drcðx; y; tÞ �~n ¼ houtðx; y; tÞ; ðx; y; tÞ 2 Cout � ð0; T �; ð3Þ
cðx; y; 0Þ ¼ c0ðx; yÞ; ðx; yÞ 2 �X; ð4Þ
where t > 0 is the time and (x, y) is the spatial location; T > 0 is the time period; X = [ax, bx] · [ay, by] is the
domain of flow, Cin denotes the inflow boundary of X, Cout denotes the outflow boundary of X,
oX = Cin + Cout, and ~n is the unit outer normal to the boundary oX; ~u ¼ ðuxðx; yÞ; uyðx; yÞÞs is the velocity
of the flow field; D = diag(Dx, Dy) is the diffusion tensor with Dx > 0 and Dy > 0; f = f(x, y, t) is the given
source term; gin(x, y, t), hout(x, y, t) and c0(x, y) are given boundary and initial data, respectively.

Because of the nature of hyperbolic types, the convection–diffusion problems involve moving sharp fronts
or boundary layers. For improving numerical results and reducing numerical oscillation and excessive disper-
sion, the efficient grid refinements are required if the standard methods are used in computation. But for high-
dimensional large-scale problems, it may lead to very large linear systems and need long computation times
(see, for example [1,2,11,15,18,21]). The fractional step method leads multi-dimensional problems to a series
of uncoupled one-dimensional problems and can be solved by parallel computing systems. However, the effi-
cient numerical method, used for the one-dimensional convection–diffusion subproblems, will play an impor-
tant role in the fractional step procedure of solving multi-dimensional convection–diffusion problems. The
most effective advantage of the ELLAM makes us develop a fractional step ELLAM approach for high-
dimensional convection–diffusion problems.

2.2. The fractional step technique

In this part, we first give a review for the splitting technique of the governing equations (1)–(4). Then, we
discuss briefly the construction feature of the fractional step approach. We recall the model in the following
form:
oc
ot
� ðLx þ LyÞc ¼ f ; ð5Þ
where L = Lx + Ly such that
Lxc � �
o

ox
ðuxcÞ þ

o

ox
Dx

o

ox
c

� �
; ð6Þ

Lyc � � o

oy
ðuycÞ þ

o

oy
Dy

o

oy
c

� �
: ð7Þ
The operator Lx can be considered as a family of one-dimensional differential operators with a given
parameter y 2 (ay, by) as well as the operator Ly is considered as another family of one-dimensional differential
operators with a given parameter x 2 (ax, bx). Then, the fractional step method can be described as follows. In
each time interval t 2 (tn, tn+1], along x-direction, we have the splitting equation:
oc
ot
¼ Lxcþ f ðx; y; tÞ; ðx; tÞ 2 ðax; bxÞ � ðtn; tnþ1�; y 2 ðay ; byÞ; ð8Þ

cnðx; yÞ ¼ cðx; y; tnÞ; x 2 ðax; bxÞ; y 2 ðay ; byÞ; ð9Þ
and let c(n+1)* = c(x, y, tn+1), x 2 (ax, bx), y 2 (ay, by). Then, along y-direction, we have the splitting
equation:
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oc
ot
¼ Lyc; ðy; tÞ 2 ðay ; byÞ � ðtn; tnþ1�; x 2 ðax; bxÞ; ð10Þ

cnðx; yÞ ¼ cðnþ1Þ�; y 2 ðay ; byÞ; x 2 ðax; bxÞ: ð11Þ
If we denote the solution of the splitting approximation by ĉ, we will have the following comment on the
convergence of the splitting approach. The sequential solution of the splitting system of (8), (9) and (10), (11)
is called to converge to the exact solution of equation (5) (see [19,24]) if it holds that
lim
Dt!0
kcðx; y; tnþ1Þ � ĉðx; y; tnþ1ÞkL2ðXÞ ¼ 0 ð12Þ
for n P 0.
Since the splitting equations are generally solved by numerical computations, the ELLAM method will be

applied for obtaining an efficient splitting approach to the governing equations in the present study. Another
thing worth mentioning about the fractional step approach is the intermediate boundary conditions. It is nec-
essary to give appropriate intermediate boundary conditions for the splitting equations (8) and (9) so that near
the boundaries the approach keeps the same accuracy as that in the interior domain. A detailed discussion of
proper intermediate boundary conditions will be given in the next section.
3. The FS-ELLAM approach

In this section we will present our FS-ELLAM algorithm for unsteady convection–diffusion problems
in two dimensions. It is straightforward to describe the proposed algorithm in three or higher
dimensions.
3.1. The x-directional ELLAM scheme

After splitting the governing equation by the Godunov algorithm, we obtain two uncoupled one-dimen-
sional convection–diffusion subproblems (8) and (10) in x-direction and y-direction, respectively. In this part,
we formulate an ELLAM scheme for the x-directional splitting equation in each time step interval (tn, tn+1].
For simplicity, let Xx = (ax, bx) and Xy = (ay, by).

For a fixed y ¼ �y 2 Xy , the x-dimensional splitting equation is: for t 2 (tn, tn+1]
ocðx; �y; tÞ
ot

þ oðuxcðx; �y; tÞÞ
ox

� o

ox
Dx

ocðx; �y; tÞ
ox

� �
¼ f ðx; �y; tÞ; x 2 Xx; ð13Þ
and the corresponding boundary conditions are
cðax; �y; tÞ ¼ g�xð�y; tÞ; t 2 ðtn; tnþ1�;

Dx
oc
ox
ðbx; �y; tÞ ¼ hxð�y; tÞ; t 2 ðtn; tnþ1�;
where the intermediate boundary value g�xð�y; tÞ will be defined later in Section 3.3, and the initial
condition is:
cnðx; �yÞ ¼ cðx; �y; tnÞ; x 2 Xx:
Let w(x, t) be the space–time test function in �Xx � ðtn; tnþ1�. Then, the weak form of the x-dimensional split-
ting equation is
Z tnþ1

tn

Z bx

ax

oc
ot
þ oðuxcÞ

ox
� o

ox
Dx

oc
ox

� �� �
wðx; tÞdx ¼

Z tnþ1

tn

Z bx

ax

f ðx; �y; tÞwðx; tÞdxdt:
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Integrating by parts, we get the reference equation of (13):
Z bx

ax

cðx; �y; tnþ1Þwðx; tnþ1Þdxþ
Z tnþ1

tn

Z bx

ax

Dx
ocðx; �y; tÞ

ox
owðx; tÞ

ox
dxdt

þ
Z tnþ1

tn
uxc� Dx

oc
ox

� �
ðx; �y; tÞwðx; tÞ

�����
bx

ax

dt �
Z tnþ1

tn

Z bx

ax

cðx; �y; tÞ ow
ot
þ ux

ow
ox

� �
ðx; tÞdxdt

¼
Z bx

ax

cðx; �y; tnÞwðx; tn
þÞdxþ

Z tnþ1

tn

Z bx

ax

f ðx; �y; tÞwðx; tÞdxdt; ð14Þ
where we denote wðx; tn
þÞ ¼ limt!tn

þ
wðx; tÞ since our test function w(x, t) is discontinuous at time level t = tn.

For designing the simple and effective test function w(x, t), we consider the test function to satisfy
ow
ot
þ ux

ow
ox
¼ 0: ð15Þ
Its characteristic is, for any given point ð�x;�tÞ with �x 2 ½ax; bx�, �t 2 ½tn; tnþ1�, the solution of equation:
dX
dh
¼ uxðX ; hÞ; ð16Þ

X ðh; �x;�tÞjh¼�t ¼ �x: ð17Þ
From Eq. (15), the test function w(x, t) is constant along the characteristic satisfying (16) and (17) in the
domain [ax, bx] · [tn, tn+1]. The Euler tracking algorithm can be used for solving the characteristic equation
(16) and (17) to obtain the approximation X ðh; �x;�tÞ ¼ �xþ ðh��tÞuxð�x;�tÞ. Normally, let X(h; x, tn) denote the
characteristic originated at point (x, tn) and X(h; ax, t) denote the characteristic originated at point (ax, t).

Further, we introduce some notations: (ex; tnþ1) denotes the point that (x, tn) tracks forward to at time tn+1,
and (x*, tn) denotes the point that tracks forward to (x, tn+1); Particularly, (b�xðtÞ; tn) denotes the point that
tracks forward to (bx, tn+1) (or to outflow boundary at (bx;etÞ) and (ax, t*(x)) denotes the point on the inflow
boundary which is tracked backward from (x, tn+1) for x 2 [ax, bx]. For any x 2 [ax, bx] at time tn+1, we extend
to define t*(x) = tn if the characteristic does not track backward to the in-flow space–time boundary. For the
outflow boundary, we introduce a fine partition. The nodes are defined as: tn;k ¼ tnþ1 � kDtf

ICx
; k ¼ 0; 1; . . . ; ICx,

where Dtf ¼ Dt
ICx

denotes the small time size on the outflow boundary and ICx is an integer number (see Fig. 1).
Now, at time level t = tn+1, we choose the test function to satisfy:
wiðx; tnþ1Þ ¼

x�xi�1

Dx ; x 2 ½xi�1; xi�;
xiþ1�x

Dx ; x 2 ðxi; xiþ1�;
0; otherwise

8><>: ð18Þ
t
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Fig. 1. The partition of x-directional domain [ax, bx] · (tn, tn+1] at y = yj.
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and at the outflow boundary,
wIþiðb; tÞ ¼

tn;i�1�t
Dtf

; x 2 ½tn;i�1; tn;i�;
t�tn;iþ1

Dtf
; t 2 ðtn;i; tn;iþ1�;

0; otherwise:

8>><>>: ð19Þ
Meanwhile, along the approximating characteristic, the test function wi(x, t) is constant in the domain
[ax, bx] · (tn, tn+1], which is same as the value wi(Æ, tn+1) at the level t = tn+1. Let V nþ1

hx be the finite element space
with base functions wi, i = 1, 2, . . ., I + ICx + 1.

Let C(n+1)* be the intermediate step approximation of cn+1. Thus, we can define the ELLAM scheme from
the reference equation (14) for the x-directional splitting equation (13) as follows: find Cðnþ1Þ� 2 V nþ1

hx with
Cðnþ1Þ�ðaxÞ ¼ g�xðtnþ1Þ such that
Z bx

ax

Cðnþ1Þ�ðx; �y; tnþ1Þwðx; tnþ1Þdxþ
Z tnþ1

tn
uxðbx; �y; tÞCðnþ1Þ�ðbx; �y; tÞwðbx; tÞdt

þ
Z bx

ax

ðtnþ1 � t�ðxÞÞDxðx; �y; tnþ1Þ oCðnþ1Þ�

ox
ðx; �y; tnþ1Þ ow

ox
ðx; tnþ1Þdx

�
Z ea

ax

dt�ðxÞ
dx

Dxðx; �y; tnþ1Þ oCðnþ1Þ�

ox
ðx; �y; tnþ1Þwðx; tnþ1Þdx

¼
Z bx

ax

Cnðx; �yÞwðx; tn
þÞdxþ

Z tnþ1

tn
uxðax; �y; tÞg�xð�y; tÞwðax; tÞdt �

Z tnþ1

tn
hxð�y; tÞwðbx; tÞdt

�
Z tnþ1

tn
ðt � tnÞhxð�y; tÞ

ow
ot
ðbx; tÞdt �

Z tnþ1

tn
ðt � tnÞ oX

ot
ðt; b�ðtÞ; tnÞf ðbx; �y; tÞwðbx; tÞdt

þ
Z bx

ax

ðtnþ1 � t�ðxÞÞf ðx; �y; tnþ1Þwðx; tnþ1Þdx ð20Þ
for any test function w(x, t) = wi(x, t), i = 1, 2, . . .,I + ICx + 1. Where g�xð�y; tÞ is the intermediate boundary
condition function. Here, for the intermediate splitting equation, we do not use the original boundary condi-
tion function gxð�y; tÞ but instead, the modified intermediate boundary condition function is used. The more
details of g�xð�y; tÞ will be described in Section 3.3.

3.2. The y-directional ELLAM scheme

In each time interval (tn, tn+1], after calculating the x-directional splitting equation for all �y ¼ yj, we sweep
in y-direction to solve the y-directional splitting equation (10) on domain Xy for all �x ¼ xi. Similarly, we can
construct the y-directional ELLAM Scheme. For a fixed x ¼ �x 2 Xx, the y-directional splitting equation is: for
t 2 (tn, tn+1]
ocð�x; y; tÞ
ot

þ oðuycð�x; y; tÞÞ
oy

� o

oy
Dy

ocð�x; y; tÞ
oy

� �
¼ 0; y 2 Xy ; ð21Þ
and the boundary conditions are:
cð�x; ay ; tÞ ¼ gyð�x; tÞ; t 2 ðtn; tnþ1�;

Dy
oc
oy
ð�x; by ; tÞ ¼ hyð�x; tÞ; t 2 ðtn; tnþ1�:
Let Cðnþ1Þ�ð�x; yÞ be the intermediate step approximation obtained in solving the x-directional splitting equa-
tion, then the initial condition is given as
cnð�x; yÞ ¼ Cðnþ1Þ�ð�x; yÞ:

Further, we introduce that yj, j = 0, 1, . . . ,J, denote the nodes at t = tn+1; (ey ; tnþ1) denotes the point that

(y, tn) tracks forward to at time tn+1; (y*, tn) denotes the point that tracks forward to (y, tn+1); (b�yðtÞ; tn) denotes
the point that tracks forward to (by, tn+1) (or to outflow boundary at ðby ;etÞ); and (ay, t*(y)) denotes the point
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on the inflow boundary which tracks forward to (y, tn+1). For any y 2 [ay, by] at time tn+1, we define t*(y) = tn

if the characteristic does not track backward to the in-flow space–time boundary. On the outflow boundary,
the nodes are tn;k ¼ tnþ1 � kDtf

ICy
; k ¼ 0; 1; . . . ; ICy , where Dtf ¼ Dt

ICy
denotes the small time size on the outflow

boundary and ICy is an integer number.
Take the test functions at time t = tn+1 as:
wjðy; tnþ1Þ ¼

y�yj�1

Dy ; y 2 ½yj�1; yj�;
yjþ1�y

Dy ; y 2 ðyj; yjþ1�;
0; otherwise

8><>: ð22Þ
and at the outflow boundary
wJþjðby ; tÞ ¼

tn;j�1�t
Dtf

; t 2 ½tn;jþ1; tn;j�;
t�tn;jþ1

Dtf
; t 2 ðtn;j; tn;jþ1�;

0; otherwise:

8>><>>: ð23Þ
In domain Xy · (tn, tn+1], the test functions are defined as constant (with the same value of wj(Æ, tn+1)) along
the characteristics. Let V nþ1

hy be the finite element space with base functions {wj(y, t)}.
Thus, the y-directional ELLAM scheme for the y-directional splitting equation (21) is defined as: For all

�x ¼ xi, find Cnþ1ð�x; yÞ 2 V nþ1
hy with Cn+1(ay) = gy(ay, tn+1) such that
Z by

ay

Cnþ1ð�x;yÞwðy; tnþ1Þdyþ
Z tnþ1

tn
uyð�x;by ; tÞCnþ1ð�x;by ; tÞwðby ; tÞdt

þ
Z by

ay

ðtnþ1� t�ðyÞÞDyð�x;y; tnþ1ÞoCnþ1

oy
ð�x;yÞow

oy
ðy; tnþ1Þdx�

Z eay

ay

dt�ðyÞ
dy

Dyð�x;y; tnþ1ÞoCnþ1

oy
ð�x;yÞwðy; tnþ1Þdy

¼
Z by

ay

Cðnþ1Þ�ð�x;yÞwðy; tn
þÞdyþ

Z tnþ1

tn
uyð�x;ay ; tÞgyð�x; tÞwðay ; tÞdt�

Z tnþ1

tn
hyð�x; tÞwðby ; tÞdt

�
Z tnþ1

tn
ðt� tnÞhyð�x; tÞ

ow
ot
ðby ; tÞdt; ð24Þ
for any test base function wj, j = 1, 2, . . ., J + ICy + 1. Where gyð�x; tÞ and hyð�x; tÞ are the original boundary
conditions.
3.3. Intermediate boundary conditions

In general, the boundary conditions for the middle step splitting equations do not simply copy the original
boundary conditions, but are designed such that the approximation system has high accuracy both in the inte-
rior domain and near the boundaries (see, for example [17,23,24]).

We recall the fractional step scheme (8) and (10) with notations Lx and Ly defined in (6) and (7) in Section
2.2. Let c* be the solution of (8) and let c*(n+1)(x, y) be c*(x, y, tn+1) at t = tn+1. Let c�ðnþ1Þðax; �yÞ denote the
intermediate boundary value on x = ax. We can express c�ðnþ1Þðax; �yÞ in the terms of boundary values by using
Taylor expansion at t = tn and Eq. (8),
c�ðnþ1Þðax; �yÞ ¼ c�ðax; �y; tnÞ þ Dtc�t ðax; �y; tnÞ þ ðDtÞ2

2
c�ttðax; �y; tnÞ þOððDtÞ3Þ

¼ c�ðax; �y; tnÞ þ DtðLxc� þ f Þðax; �y; tnÞ þ ðDtÞ2

2
½LxðLxc� þ ftÞ þ f �ðax; �y; tnÞ þOððDtÞ3Þ: ð25Þ
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Since c�ðx; �y; tnÞ ¼ cðx; �y; tnÞ for x 2 [ax, bx], it holds
c�ðnþ1Þðax; �yÞ ¼ cðax; �y; tnÞ þ DtðLxcþ f Þðax; �y; tnÞ þ ðDtÞ2

2
ðLxLxcþ Lxft þ f Þðax; �y; tnÞ þOððDtÞ3Þ

¼ cðax; �y; tnÞ þ Dtðct � LycÞðax; �y; tnÞ þ ðDtÞ2

2
ðLxLxcþ Lxft þ f Þðax; �y; tnÞ þOððDtÞ3Þ; ð26Þ
where we used Eq. (5) of the exact solution, which gives Lxc + f = ct � Lyc at t = tn in (26). Further, using the
numerical integration
DtLycðax; �y; tnÞ ¼
Z tnþ1

tn
Lycðax; �y; sÞds� ðDtÞ2

2
Lyctðax; �y; tnÞ þOððDtÞ3Þ

¼
Z tnþ1

tn
Lycðax; �y; sÞds� ðDtÞ2

2
LyðLxcþ Lycþ f Þðax; �y; tnÞ þOððDtÞ3Þ; ð27Þ
and expanding cðax; �y; tnÞ and ctðax; �y; tnÞÞ by Taylor expansion, from (26) we have
c�ðnþ1Þðax; �yÞ ¼ cðax; �y; tnþ1Þ �
Z tnþ1

tn
Lycðax; �y; sÞds

þ ðDtÞ2

2
ðLxLxcþ LxLycþ LyLycþ Lxft þ Lyf þ f Þðax; �y; tnÞ þOððDtÞ3Þ: ð28Þ
Ignoring the high order terms of Dt in (28), c�ðnþ1Þðax; �yÞ just is the nth time level solution of the second split-
ting equation (10)
oc
ot
¼ Lyc; ð�y; tÞ 2 ðay ; byÞ � ½tn; tnþ1�; ð29Þ

cnðx; yÞ ¼ c�ðnþ1Þ; �y 2 ðay ; byÞ; ð30Þ
on boundary x = ax by the direct integration from tn+1 back to tn. Thus, the scheme of intermediate boundary
values c*(n+1)(ax) for the first (x-directional) splitting equation (8) can be defined by solving numerically the
second (y-directional) splitting equation (10) on boundaries with the values at tn as unknowns. The interme-
diate boundary scheme can be defined as follows: for x = ax and y 2 Xy = [ay, by], find C(n+1)*(ax, y) such that
Z by

ay

Cðnþ1Þ�ðax; yÞwðy; tn
þÞdy ¼

Z by

ay

cðax; y; tnþ1Þwðy; tnþ1Þdy þ
Z tnþ1

tn
ðuycÞðax; by ; tÞwðby ; tÞdt

þ
Z by

eay

ðtnþ1 � t�ðyÞÞDy
oc
oy
ðax; y; tnþ1Þ ow

oy
ðy; tnþ1Þdy

þ
Z tnþ1

tn
hyðax; tÞwðby ; tÞdt þ

Z tnþ1

tn
ðt � tnÞhyðax; tÞ

ow
ot
ðby ; tÞdt; ð31Þ
i.e., the intermediate boundary values for the x-directional splitting scheme (20) are obtained by solving the
y-directional scheme (24) backward from tn+1 to tn on the boundaries.

3.4. The FS-ELLAM algorithm

Finally, we can propose our fractional step ELLAM approach (FS-ELLAM) based on the discussions
above. Let Cn and Cn+1 be the numerical solutions at time t = tn and t = tn+1, respectively, and let C(n+1)*

be the intermediate step approximation. The FS-ELLAM algorithm can be described as:

Step 1. Initialization: C0(xi,yj) = c0(xi,yj), 0 6 i 6 I, 0 6 j 6 J.
Step 2. For n = 0, 1, . . . ,N � 1, Do
Step 3. Calculate the intermediate boundary values C(n+1)*(ax,Æ) with the boundary scheme (31).
Step 4. For all �y ¼ yj; 1 6 j 6 J , calculate the intermediate step approximations Cðnþ1Þ�ðxi; �yÞ, 1 6 i 6 I by

solving the x-directional ELLAM scheme (20) with Cnðxi; �yÞ being the initial values.

Step 5. For all �x ¼ xi; 1 6 i 6 I , Do
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Step 6. Set the initial values for sweeping in y–direction: Cnð�x; yjÞ ¼ Cðnþ1Þ�ð�x; yjÞ, 1 6 j 6 J.
Step 7. Calculate (n + 1)th level approximating solution Cnþ1ð�x; yjÞ, 1 6 j 6 J, by solving the

y-directional ELLAM scheme (24).
End Do

End Do
Step 8. Output the approximating solution: CN(xi, yj), 1 6 i 6 I, 1 6 j 6 J.

Remarks 3.1. In scheme (20), since Cðnþ1Þ� 2 V nþ1
hx and wðx; tÞ 2 V nþ1

hx are standard piecewise linear functions at
time tn+1, all terms except the first one on the right side are standard integrals in one-dimensional finite
element methods and can be evaluated in a fairly standard way such as using the Gaussian quadratures.
Meanwhile, we mention that for x P ~a, tn+1 � t*(x) = Dt, and for ax 6 x < ~a, tn+1 � t*(x) is the length of
characteristic line tracking backward from (x, tn+1) to the space–time boundary, which can be calculated from
the approximate characteristic line ax = X(t*(x);x, tn+1) = x � ux(ax, tn+1)(tn+1 � t*(x)), and dt�ðxÞ

dx can be

approximated by the relation of X xðt�ðxÞ; x; tnþ1Þ ¼ �uxðax; t�ðxÞÞdt�ðxÞ
dx . We refer interested readers to [4,7,26]

for more details of the evaluations of the integration terms.
However, in the first term on the right side, the test functions wðx; tn

þÞ :¼ limt!tn
þ
wðx; tÞ ¼ wð~x; tnþ1Þ; where

~x ¼ X ðtnþ1; x; tnÞ is the point at the head of the characteristic that corresponds to x at the foot. The most
practical approach for evaluating this term is to use a forward tracking algorithm proposed by Russell and
Trujillo [22]. In this algorithm, the Gaussian quadrature is enforced at time level tn with respect to the fixed
spatial grid on which Cnðx; �yÞ is defined, and the difficult evaluation is the test function wðx; tn

þÞ. Rather than
backtracking the geometry for valuing the test function, discrete quadrature points chosen on the fixed grids at
the time level tn can be tracked forward to time step level tn+1, where the value of w(x, tn+1) is given by the
standard base function. The forward tracking algorithm used here does not suffer from the complication of
distorted grids. Similarly, we can evaluate the integration terms of the scheme (24). For the intermediate
boundary equation (31), the only unknown term on the left side is formed similarly to the first term on the
right side of (20) but all other terms on the right side of (31) are evaluated from the given boundary functions
by the Gaussian quadratures.

Remarks 3.2. Since the one-dimensional ELLAM method is used to solve the splitting equations, the FS-
ELLAM solution technique inherits the advantages of the ELLAM method for convection-dominated diffu-
sion problems. By using a characteristic tracking, the one-dimensional ELLAM schemes (20) and (24) reduce
temporal errors for the splitting equations. It generates accurate numerical solutions even through large step
sizes are used in computation. The method effectively treats boundary conditions, which is more involved
because both the inflow and outflow boundary data can be incorporated into the general formulation. We
do not use the exact inflow boundary values at tn+1 level for sweeping in x-direction for solving the x-direc-
tional splitting equation. Instead, we solve intermediate boundary values C(n+1)*(ax, Æ) with the boundary
scheme (31). This treatment leads the fractional step ELLAM scheme to be very compatible and to have
the same accuracy of temporal errors near the boundaries as that in the interior domain.

Remarks 3.3. Meanwhile, the fractional step technique is applied in the FS-ELLAM approach, which reduces
multi-dimensional problems into a series of one-dimensional subproblems. In each time step interval, the one-
dimensional ELLAM method is applied to solve the x-directional splitting equations for fixed �y ¼ yj; 1 6 j 6 J
in Step 4, and the y-directional one-dimensional splitting equations for fixed �x ¼ xi; 1 6 i 6 I in Step 5. The cor-
responding algebraic equation systems for the x-directional splitting equations and the y-directional splitting equa-
tions are only symmetric and tridiagonal systems which can be easily solved by the Thomas algorithm. The
approach reduces complexities of computation, requirements of large memory, and long computation durations.
4. Numerical experiments

In this section we present numerical experiments for several different convection–diffusion problems.
Firstly, in Section 4.1, we investigate the FS-ELLAM for convection–diffusion problems with non-zero source
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terms and time-dependent boundary conditions. In Section 4.2, we then simulate numerically the moving of a
Gaussian hump in two-dimensions. We will focus on the effects of the methods, the diffusion coefficients and
velocity components on the accuracy, the ratio of convergence, and the shape of the approximate moving
Gaussian hump. In particular, we show the CPU time comparison by our fractional step ELLAM method
(FS-ELLAM) with the two-dimensional ELLAM method (without splitting), the upstream difference method
(USDM), the central difference method (CDM), the fractional step USDM method (FS-USDM) and the frac-
tional step CDM method (FS-CDM). Finally, the third experiment in Section 4.3 discusses the problems of
moving sharp fronts. The numerical results are compared in detail to show the excellent performance of
our FS-ELLAM approach.

Let c(x, y, tn) be the exact solution of the problem and Cn be the approximate solution, then we calculate
errors in L2-norm and L1-norm as:
En
1;Dt ¼ max

i;j
ðen

Dx;Dy;Dtði; jÞÞ ¼ max
i;j
fjcðxi; yj; t

nÞ � Cnðxi; yjÞjg; ð32Þ

En
2;Dt ¼ ken

Dx;Dy;Dtk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i;j

DxDyðcðxi; yj; tnÞ � Cnðxi; yjÞÞ
2

s
; ð33Þ
where Dx and Dy are the step sizes in space and Dt is the step size in time. The ratios of convergence in time are
calculated by
log
El;Dt1

El;Dt2

� �
log

Dt1

Dt2

� �� ��1

; l ¼ 2;1; ð34Þ
when very small spatial step sizes Dx and Dy are taken in computation. Similarly, the ratios of convergence in
space can be calculated. When the problem in experiment is with unknown exact solution, we will replace
c(xi, yj, tn) in the above formulas by the approximate analytical solution �cðxi; yj; t

nÞ obtained numerically by
the two-dimensional ELLAM method (without splitting) (see [26]) with fine mesh.
4.1. Non-zero source problems

In this part, we will consider some convection–diffusion problems with non-zero source terms. The prob-
lems have small diffusion coefficients while the velocities involved are relatively large and satisfy Dirichlet
in-flow and Neumann out-flow boundary conditions.

We will investigate numerically the problems with our FS-ELLAM proposed last section, the FS-CDM
and the FS-USDM. The FS-USDM used here is the fractional step upstream central difference method,
i.e., in each time interval t 2 (tn, tn+1], the Euler backward upstream central difference scheme (implicit
scheme) is alternately used to solve the x-directional splitting equation and the y-directional splitting equa-
tion, in which the upstream difference is used to treat the convection terms of the one-dimensional split-
ting convection diffusion equations along x-direction and y-direction, respectively. The FS-CDM used here
is the fractional step central difference method (Euler backward scheme), in which the central difference is
used to discrete the convection terms of the splitting equations. Meanwhile, for the fractional step
upstream central difference method (FS-USDM) and the fractional step CDM method (FS-CDM), the
intermediate boundary conditions are also designed for the intermediate step splitting schemes in proce-
dures of computation, which are similar to that discussed in Section 3.3 but are solved by the one-dimen-
sional upstream central difference scheme and the one-dimensional central difference scheme along the
boundaries, respectively.

Example 1. Firstly, we consider the following convection–diffusion problem with a non-zero source on the
spatial region X = [0, 1] · [0, 1].
oc
ot
þrð~ucÞ � rðDrcÞ ¼ f1ðx; y; tÞ; ðx; y; tÞ 2 X� ð0; T �; ð35Þ
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where
f1ðx; y; tÞ ¼
xð0:81� x2Þyð0:81� y2Þ; ðx; yÞ 2 ½0; 0:9� � ½0; 0:9�;
0; otherwise

�
ð36Þ
with the initial and boundary conditions:
cð0; y; tÞ ¼ 1; y 2 ½0; 1�; cðx; 0; tÞ ¼ 1; x 2 ½0; 1�; t 2 ð0; T �;
oc
ox
ð1; y; tÞ ¼ 0; y 2 ½0; 1�; oc

oy
ðx; 1; tÞ ¼ 0; x 2 ½0; 1�; t 2 ð0; T �; ð37Þ

cðx; y; 0Þ ¼ 0; ðx; yÞ 2 X:
In this test, the velocity field is taken as~u ¼ ð3; 3Þs and the diffusion coefficient is chosen as D = 1, 10�4 and
10�7. We compute the problem by using our FS-ELLAM as well as the FS-CDM and the FS-USDM. To
obtain the ratios in time, we solve the problem with very small spatial step sizes Dx = Dy = 1/200, and vary
the time step sizes as Dt = 1/10, 1/20, 1/30, 1/40, 1/50 and 1/60. Since we do not have the exact solution of this
problem, we use the reference analytical solution obtained numerically by the two-dimensional ELLAM
method (without splitting) (2D ELLAM) on the refined mesh Dt = 1/200 to calculate errors in L1-norm
and L2-norm. In Table 1, we compare the errors and ratios in time for the three numerical methods for the
different diffusion coefficients D = 1, 10�4 and 10�7 at time t = 1.0. For the large diffusion coefficient
D = 1, though all of these three numerical methods can obtain first order ratio in time, the errors of the
FS-ELLAM are smaller than those of the other two methods. For the convection-dominated diffusion prob-
lem with very small diffusion coefficients D = 10�4 and D = 10�7, it is clearly shown that the error ratios in
time by the FS-ELLAM are still of first order. For example, the ratios in L1-norm are 1.3817 and 1.0375
at time step size Dt = 1/60 when the diffusion coefficients are 10�4 and D = 10�7, respectively. When the dif-
fusion coefficients are D = 10�4 and D = 10�7, the numerical solutions of the FS-CDM scheme with Dt = 1/60
oscillates. For the FS-USDM scheme, the ratios in time are only less than 0.3-order in L2-norm and less than
0.1-order in L1-norm. Meanwhile, from the table, it is clear that for small diffusion coefficients, the errors in
L1-norm and L2-norm are very small even when using large time step sizes. For example, for D = 10�7, the
error in L1-norm with a large step size Dt = 1/10 is 7.4676 · 10�3, which is similar in accuracy with that of
using a small step size Dt = 1/60, i.e. 1.2284 · 10�3. The FS-CDM and the FS-USDM perform very poorly
in accuracy for small diffusion coefficients. Numerical results indicate that both the FS-CDM and the FS-
USDM cannot handle the convection-dominated diffusion problems well. We can see the FS-ELLAM has
first-order ratio in time in both L1-norm and L2-norm for the problems with small diffusions. Thus, we
can clearly conclude that the FS-ELLAM scheme is much better than the FS-CDM scheme and FS-USDM
scheme for the convection–diffusion problems.

Example 2. Next, we will solve the convection–diffusion problem with a more complicated time-dependent
source term and boundary conditions. The source term is
f2ðx; y; tÞ ¼ cosðtÞxð1� x2Þyð1� y2Þ; ðx; y; tÞ 2 ½0; 1� � ½0; 1� � ð0; T � ð38Þ

with the in-flow boundary conditions:
cð0; y; tÞ ¼ 1þ t sinðtÞ; y 2 ½0; 1�; cðx; 0; tÞ ¼ 1þ t sinðtÞ; x 2 ½0; 1� ð39Þ
and the out-flow boundary and initial conditions are the same as those in Example 1. The velocity is also taken
as~u ¼ ð3; 3Þs. The diffusion coefficients are taken as D = 1, 10�4 and 10�7. The spatial and time step sizes are
the same as those used in Example 1.

Note that the source term f2(x, y, t) and in-flow boundary conditions depend on time, while in Example 1,
they are independent of time. From the computation, we see that, although with more complicated source and
in-flow boundary functions, our FS-ELLAM still works very well and is not much affected by the dependence
on time. Table 2 shows the errors and ratios in time of these three methods for different diffusion coefficients
D = 1, 10�4 and 10�7 at time t = 1.0. It can be seen clearly that the FS-ELLAM is much more accurate than



Table 1
The errors and ratios in time for the convection–diffusion problem with non-zero source f1(x, y, t) and velocity ~u ¼ ð3; 3Þs

D Dt 1/10 1/20 1/30 1/40 1/50 1/60

FS-ELLAM 1 L1-error 5.3292E�2 3.0780E�2 2.0718E�2 1.5001E�2 1.1309E�2 8.7301E�3
Ratio – 0.7919 0.9764 1.1224 1.2660 1.4196
L2-error 2.0704E�2 1.1886E�2 7.9823E�3 5.7757E�3 4.3555E�3 3.3660E�3
Ratio – 0.8007 0.9818 1.1248 1.2647 1.4135

10�4 L1-error 3.9000E�2 1.9175E�2 1.2478E�2 8.9213E�3 6.7190E�3 5.2228E�3
Ratio – 1.0242 1.0596 1.1664 1.2705 1.3817
L2-error 4.0138E�3 2.0581E�3 1.3587E�3 1.0015E�3 7.8536E�4 6.4114E�4
Ratio – 0.9637 1.0241 1.0605 1.0893 1.1128

10�7 L1-error 7.4676E�3 3.8522E�3 2.5280E�3 1.8723E�3 1.4842E�3 1.2284E�3
Ratio – 0.9550 1.0388 1.0438 1.0410 1.0375
L2-error 2.6817E�3 1.4363E�3 9.7893E�4 7.4356E�4 6.0059E�4 5.0479E�4
Ratio – 0.9008 0.9456 0.9560 0.9570 0.9531

FS-CDM 1 L1-error 9.9081E�2 5.7324E�2 3.9702E�2 2.9695E�2 2.3223E�2 1.8690E�2
Ratio – 0.7895 0.9059 1.0095 1.1018 1.1909
L2-error 6.1068E�2 3.1616E�2 2.0906E�2 1.5340E�2 1.1926E�2 9.6173E�3
Ratio – 0.9498 1.0201 1.0761 1.1283 1.1801

10�4 L1-error 6.2111E�1 6.4708E�1 6.5586E�1 6.5921E�1 6.6024E�1 6.6010E�1
Ratio – – – – – –
L2-error 2.5316E�1 2.2051E�1 2.0193E�1 1.8878E�1 1.7867E�1 1.7055E�1
Ratio – 0.1992 0.2172 0.2341 0.2465 0.2553

10�7 L1-error 7.0215E�1 6.8820E�1 6.8737E�1 6.8980E�1 6.9256E�1 6.9491E�1
Ratio – – – – – –
L2-error 2.6307E�1 2.2821E�1 2.0916E�1 1.9608E�1 1.8620E�1 1.7833E�1
Ratio – 0.2051 0.2150 0.2245 0.2317 0.2369

FS-USDM 1 L1-error 9.7691E�2 5.5517E�2 3.7833E�2 2.7799E�2 2.1313E�2 1.6776E�2
Ratio – 0.8153 0.9459 1.0713 1.1906 1.3131
L2-error 6.0432E�2 3.0993E�2 2.0294E�2 1.4737E�2 1.1329E�2 9.0266E�3
Ratio – 0.9634 1.0443 1.1124 1.1784 1.2462

10�4 L1-error 7.2036E�1 6.6380E�1 6.3825E�1 6.2094E�1 6.0722E�1 5.9657E�1
Ratio – 0.1180 0.0968 0.0956 0.1001 0.0971
L2-error 3.1674E�1 2.4211E�1 2.1423E�1 1.9788E�1 1.8651E�1 1.7790E�1
Ratio – 0.3877 0.3016 0.2760 0.2652 0.2592

10�7 L1-error 7.2431E�1 6.7505E�1 6.5496E�1 6.4206E�1 6.3207E�1 6.2384E�1
Ratio – 0.1016 0.0745 0.0691 0.0703 0.0719
L2-error 3.2106E�1 2.4769E�1 2.2049E�1 2.0461E�1 1.9362E�1 1.8531E�1
Ratio – 0.3743 0.2869 0.2598 0.2476 0.2404

D. Liang et al. / Journal of Computational Physics 221 (2007) 198–225 209
the FS-CDM and the FS-USDM for problems with both small and large diffusion coefficients. For the large
diffusion coefficient D = 1, the FS-ELLAM has better order of convergence than the FS-CDM and the FS-
USDM, and the corresponding ratios in L1-norm for these three methods with Dt = 1/60 are 1.4475,
1.1971, and 1.3345, respectively. For the cases with small diffusion coefficients D = 10�4 and D = 10�7, numer-
ical results of the FS-CDM and the FS-USDM get much worse. For example, with Dt = 1/60, the ratios of
convergence in L1-norm of the FS-USDM are only 0.0945 and 0.0464 for D = 10�4 and D = 10�7, respec-
tively. There is no ratio in L1-norm for the FS-CDM due to oscillation. However, the FS-ELLAM still keeps
first-order ratios in time as 1.1640 and 0.9813 in L1-norm as well as 1.0217 and 0.9354 in L2-norm for
D = 10�4 and D = 10�7, respectively.

Example 3. Thirdly, we will consider the problem with a large non-zero source on the spatial region
X = [0, 1] · [0, 1] as:
f3ðx; y; tÞ ¼ 4xð1� x2Þyð1� y2Þ; ðx; y; tÞ 2 X� ð0; T �; ð40Þ

with the in-flow boundary conditions
cð0; y; tÞ ¼ 1:2; y 2 ½0; 1�; cðx; 0; tÞ ¼ 1:2; x 2 ½0; 1�; ð41Þ



Table 2
The errors and ratios in time for the convection–diffusion problem with non-zero source f2(x, y, t), inflow boundary gin(t) = 1 + t sin(t) and
velocity ~u ¼ ð3; 3Þs

D Dt 1/10 1/20 1/30 1/40 1/50 1/60

FS-ELLAM 1 L1-error 4.9021E�2 2.8569E�2 1.9190E�2 1.3839E�2 1.0387E�2 7.9780E�3
Ratio – 0.7790 0.9814 1.1363 1.2857 1.4475
L2-error 1.9072E�2 1.1044E�2 7.4129E�3 5.3501E�3 4.0227E�3 3.0978E�3
Ratio – 0.7882 0.9832 1.1335 1.2780 1.4329

10�4 L1-error 4.0889E�2 1.9807E�2 1.2872E�2 9.2366E�3 7.2153E�3 5.8356E�3
Ratio – 1.0457 1.0629 1.1537 1.1068 1.1640
L2-error 5.2444E�3 2.7329E�3 1.8302E�3 1.3692E�3 1.0908E�3 9.0540E�4
Ratio – 0.9404 0.9889 1.0088 1.0186 1.0217

10�7 L1-error 1.3808E�2 7.9417E�3 5.5053E�3 4.1988E�3 3.3845E�3 2.8300E�3
Ratio – 0.7980 0.9037 0.9416 0.9662 0.9813
L2-error 4.3161E�3 2.3035E�3 1.5706E�3 1.1950E�3 9.6775E�4 8.1602E�4
Ratio – 0.9059 0.9445 0.9499 0.9454 0.9354

FS-CDM 1 L1-error 9.0574E�2 5.2939E�2 3.6802E�2 2.7554E�2 2.1542E�2 1.7318E�2
Ratio – 0.7748 0.8967 1.0060 1.1032 1.1971
L2-error 5.5108E�2 2.8471E�2 1.8797E�2 1.3763E�2 1.0671E�3 8.5791E�3
Ratio – 0.9528 1.0240 1.0836 1.1401 1.1969

10�4 L1-error 6.3162E�1 6.5208E�1 6.5902E�1 6.6143E�1 6.6190E�1 6.6138E�1
Ratio – – – – – –
L2-error 2.4991E�1 2.1901E�1 2.0095E�1 1.8805E�1 1.7810E�1 1.7007E�1
Ratio – 0.1904 0.2123 0.2306 0.2437 0.2529

10�7 L1-error 7.2041E�1 6.9953E�1 6.9632E�1 6.9751E�1 6.9948E�1 7.0128E�1
Ratio – – – – – –
L2-error 2.6080E�1 2.2722E�1 2.0854E�1 1.9564E�1 1.8586E�1 1.7807E�1
Ratio – 0.1989 0.2115 0.2220 0.2297 0.2351

FS-USDM 1 L1-error 8.9152E�2 5.1084E�2 3.4886E�2 2.5612E�2 1.9587E�2 1.5357E�3
Ratio – 0.8034 0.9406 1.0742 1.2018 1.3345
L2-error 5.4442E�1 2.7813E�2 1.8148E�2 1.3122E�3 1.0037E�3 7.9504E�3
Ratio – 0.9690 1.0529 1.1273 1.2011 1.2783

10�4 L1-error 7.1524E�1 6.6068E�1 6.3587E�1 6.1897E�1 6.0552E�1 5.9518E�1
Ratio – 0.1145 0.0944 0.0936 0.0984 0.0945
L2-error 3.1488E�1 2.4081E�1 2.1329E�1 1.9714E�1 1.8591E�1 1.7739E�1
Ratio – 0.3869 0.2993 0.2736 0.2629 0.2572

10�7 L1-error 7.1933E�1 6.7215E�1 6.5279E�1 6.4029E�1 6.3315E�1 6.2782E�1
Ratio – 0.0979 0.0721 0.0672 0.0502 0.0464
L2-error 3.1922E�1 2.4641E�1 2.1957E�1 2.0390E�1 1.9303E�1 1.8482E�1
Ratio – 0.3735 0.2845 0.2574 0.2454 0.2384

210 D. Liang et al. / Journal of Computational Physics 221 (2007) 198–225
and the initial and out-flow boundary conditions same as those in Example 1. The spatial and time step sizes
are the same as Example 1 as well.

In this case, the source function f3(x, y, t) does not vanish near the out-flow boundary, which is different
with the first source function f1(x, y, t) in Example 1. The maximum value of f3(x, y, t) is larger than that
of f1(x, y, t). The in-flow boundary values are also a little bit bigger than those in Example 1. In Table 3, it
has been shown clearly that our FS-ELLAM can treat these types of source terms and boundary conditions
well due to the advantages of the ELLAM discussed above. Comparing the numerical results at t = 1.0 in
Table 3 with those in Tables 1 and 2, we can see clearly that for the small diffusion coefficients, the source
term and boundary values affect numerical results of the FS-CDM and the FS-USDM more than those of
the FS-ELLAM.

In this subsection, we have compared these numerical methods in terms of errors and ratios in L1-norm
and L2-norm for convection diffusion problems with non-zero sources and non-zero inflow boundary condi-
tions. The numerical results show that all of these three numerical methods can obtain first order ratio in time
for the large diffusion coefficient D = 1. However, for the convection-dominated problems with the small dif-



Table 3
The errors and ratios in time for the convection–diffusion problem with non-zero source f3(x, y, t) and velocity ~u ¼ ð3; 3Þs

D Dt 1/10 1/20 1/30 1/40 1/50 1/60

FS-ELLAM 1 L1-error 6.8952E�2 3.7020E�2 2.4169E�2 1.7156E�2 1.2731E�2 9.6814E�3
Ratio – 0.8973 1.0516 1.1913 1.3370 1.5019
L2-error 2.9185E�2 1.5587E�2 1.0201E�2 7.2898E�3 5.4656E�3 4.2166E�3
Ratio – 0.9049 1.0456 1.1679 1.2906 1.4230

10�4 L1-error 8.2437E�2 4.5835E�2 3.0732E�2 2.2903E�2 1.8176E�2 1.4957E�2
Ratio – 0.8468 0.9859 1.0221 1.0359 1.0692
L2-error 1.7767E�2 9.4586E�3 6.4328E�3 4.8824E�3 3.9443E�3 3.3182E�3
Ratio – 0.9095 0.9508 0.9586 0.9562 0.9481

10�7 L1-error 5.5541E�2 3.1947E�2 2.2146E�2 1.6894E�2 1.3617E�2 1.1386E�2
Ratio – 0.7979 0.9037 0.9408 0.9664 0.9814
L2-error 1.7420E�2 9.2984E�3 6.3371E�3 4.8192E�3 3.9004E�3 3.2868E�3
Ratio – 0.9057 0.9456 0.9518 0.9480 0.9387

FS-CDM 1 L1-error 1.2899E�1 7.5229E�2 5.2317E�2 3.9309E�2 3.0893E�2 2.4997E�2
Ratio – 0.7779 0.8958 0.9937 1.0797 1.1616
L2-error 7.9185E�2 4.1286E�2 2.7411E�2 2.0182E�2 1.5743E�2 1.2739E�2
Ratio – 0.9396 1.0102 1.0642 1.1133 1.1612

10�4 L1-error 7.2406E�1 7.6080E�1 7.7481E�1 7.8083E�1 7.8339E�1 7.8416E�1
Ratio – – – – – –
L2-error 3.0215E�1 2.6297E�1 2.4101E�1 2.2551E�1 2.1360E�1 2.0401E�1
Ratio – 0.2004 0.2150 0.2311 0.2432 0.2520

10�7 L1-error 8.5730E�1 8.4284E�1 8.4210E�1 8.4482E�1 8.4784E�1 8.5039E�1
Ratio – – – – – –
L2-error 3.1811E�1 2.7556E�1 2.5251E�1 2.3679E�1 2.2499E�1 2.1563E�1
Ratio – 0.2071 0.2155 0.2234 0.2292 0.2330

FS-USDM 1 L1-error 3.0751E�1 7.3148E�2 5.0166E�2 3.7129E�2 2.8699E�2 2.2796E�2
Ratio – 2.0718 0.9301 1.0461 1.1541 1.2631
L2-error 8.0043E�2 4.0592E�2 2.6732E�2 1.9515E�2 1.5085E�2 1.2089E�2
Ratio – 0.9796 1.0302 1.0938 1.1539 1.2143

10�4 L1-error 8.5453E�1 7.8948E�1 7.6033E�1 7.4053E�1 7.2476E�1 7.1249E�1
Ratio – 0.1142 0.0928 0.0917 0.0965 0.0937
L2-error 3.7469E�1 2.8716E�1 2.5473E�1 2.3568E�1 2.2241E�1 2.1233E�1
Ratio – 0.3838 0.2956 0.2701 0.2598 0.2544

10�7 L1-error 8.6074E�1 8.0415E�1 7.8129E�1 7.6664E�1 7.5524E�1 7.4618E�1
Ratio – 0.0981 0.0711 0.0658 0.0672 0.0662
L2-error 3.7993E�1 2.9393E�1 2.6230E�1 2.4381E�001 2.3098E�1 2.2127E�1
Ratio – 0.3703 0.2808 0.2540 0.2423 0.2357
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fusion coefficients D = 10�4 and D = 10�7, we come into conclusion that the FS-ELLAM treats these prob-
lems very accurately and has first-order ratio in time in both L2-norm and L1-norm, while the FS-CDM and
FS-USDM are impractical and have very low ratios in time (less than 0.3-order in L2-norm and less than
0.1-order in L1 norm).
4.2. The moving Gaussian hump

In this subsection, we consider the moving of the Gaussian pulse of the convection diffusion problem (1)–(4)
over a spatial domain X = [ax, bx] · [ay, by] with velocity ~u ¼ ðV x; V yÞs and small diffusion D > 0. The initial
configuration of the Gaussian pulse is given by
cðx; y; 0Þ ¼ exp �ðx� x0Þ2 þ ðy � y0Þ
2

2r2
0

 !
; ðx; yÞ 2 X; ð42Þ



Fig. 2. The moving Gaussian hump with diffusion D = 0.001 and velocity ~u ¼ ð2; 2Þs.
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where r0 > 0 is the initial standard deviation of the Gaussian pulse, and (x0, y0) is the initial location of the
centre of mass. Let Cin :¼ [ax, bx] · {y = ay} [ [ay, by] · {x = ax} be the in-flow boundary, and let
Cout :¼ [ax, bx] · {y = by} [ [ay, by] · {x = bx} be the out-flow boundary. The boundary conditions are
c(x, y, t) = g(x, y, t), (x, y) 2 Cin, t 2 (0, T] and ocðx;y;tÞ

on ¼ hðx; y; tÞ; ðx; yÞ 2 Cout; t 2 ð0; T �: Further, g(x, y, t),
h(x, y, t) and f(x, y, t) are computed according to the analytical solution of the problem, which is given by:
Table
The m

Diffusi

D = 0.

D = 0.

Table
The er

Diffusi

D = 0.

D = 0.
cðx; y; tÞ ¼ r2
0

r2ðtÞ exp �ðx� x0 � V xtÞ2 þ ðy � y0 � V ytÞ2

2r2ðtÞ

 !
ð43Þ
with rðtÞ ¼ ðr2
0 þ 2DtÞ

1
2. For this problem, the Gaussian distribution hump centred initially at (x0, y0) will

propagate in the velocity field and diffuse due to the effect of the small diffusion. There are serious difficulties
in simulating the moving procedure of the Gaussian hump numerically (see, for example [14]). In this exper-
iment, we apply our FS-ELLAM scheme to compute the moving Gaussian pulse problem numerically.

Firstly, we carry out numerical computations of the moving Gaussian hump. The velocity field is chosen as
Vx = Vy = 2 and the diffusion coefficient is taken as D = 0.1 or D = 0.001. The spatial domain is
X = [0, 2] · [0, 2]. The center of the initial Gaussian pulse is specified as (x0, y0) = (0.5, 0.5). Take the spatial
step sizes Dx = Dy = 1/100 and the time step size Dt = 1/10. A group of surfaces and contour plots at different
times, obtained by the FS-ELLAM, the FS-CDM, and the FS-USDM, display the propagation of the moving
Gaussian hump as shown in Fig. 2. The diffusion coefficient is D = 0.001. The deviation of the initial Gaussian
pulse is r0 = 0.1. The surfaces and contour plots are at four different times t = 0.0, 0.2, 0.4 and 0.6. From the
surface figures, we can see clearly that the FS-ELLAM (in Fig. 2(i)c) simulates the surface of the Gaussian
hump very well while the FS-CDM (in Fig. 2(i)a) and the FS-USDM (in Fig. 2(i)b) smear the hump badly.
From the contour plots in Fig. 2(ii)a–d, both the FS-CDM and the FS-USDM schemes deform the shape
of the Gaussian hump and change the location of the centre of the Gaussian hump. Our FS-ELLAM perfectly
simulates the propagation of the Gaussian pulse and the moving Gaussian pulse (in Fig. 2(ii)c) is in excellent
agreement with the pulse of the exact solution (in Fig. 2(ii)d). The errors of the computed peaks for the cases
with D = 0.1 and D = 0.001 are shown in Table 4. For example, with the diffusion coefficient D = 0.001 and at
time t = 0.4, where the exact value of the peak is 0.9259, the computed peak of the FS-ELLAM is 0.9267 while
FS-CDM’s and FS-USDMs are only 0.0695 and 0.0665, respectively. The error of the peak is about 0.1% for
4
aximum and minimum of the moving Gaussian pulse with velocity ~u ¼ ð2; 2Þs

on coefficient Final time Exact solution FS-ELLAM FS-CDM FS-USDM

T Max. Min. Max. Min. Max. Min. Max. Min.

1 0.2 0.2000 0.0 0.2499 0.0 0.1176 0.0 0.1142 0.0
0.4 0.1111 0.0 0.1289 0.0 0.0494 0.0 0.0479 0.0
0.6 0.0769 0.0 0.0859 0.0 0.0311 0.0 0.0301 0.0

001 0.2 0.9615 0.0 0.9619 0.0 0.1608 0.0 0.1548 0.0
0.4 0.9259 0.0 0.9267 0.0 0.0695 0.0 0.0665 0.0
0.6 0.8929 0.0 0.8939 0.0 0.0439 0.0 0.0420 0.0

5
rors of the moving Gaussian pulse with velocity ~u ¼ ð2; 2Þs

on coefficient Final time FS-ELLAM FS-CDM FS-USDM

T L1-error L2-error L1-error L2-error L1-error L2-error

1 0.2 4.9860E�2 1.0839E�2 1.2670E�1 4.2802E�2 1.2857E�1 4.3498E�2
0.4 1.0787E�2 5.3690E�3 7.2594E�2 3.2558E�2 7.3658E�2 3.3158E�2
0.6 8.9961E�3 3.2084E�3 5.0645E�2 2.4578E�2 5.1397E�2 2.5028E�2

001 0.2 4.3254E�4 4.9118E�5 8.5363E�1 1.4700E�1 8.5826E�1 1.4813E�1
0.4 7.7407E�4 8.9542E�5 8.7061E�1 1.5561E�1 8.7301E�1 1.5621E�1
0.6 1.0257E�3 6.7770 E�4 8.5529E�1 1.5580E�1 8.5693E�1 1.5625E�1



Fig. 3. The surfaces and contour plots of the moving Gaussian pulse with different time step sizes.
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the FS-ELLAM but 92% for the FS-CDM and 93% for the FS-USDM. Moreover, numerical errors in
L1-norm and L2-norm of these numerical methods are listed in Table 5 for the cases with D = 0.1 and
D = 0.001. For example, for D = 0.001 at t = 0.6 the errors of the FS-ELLAM in L1-norm and L2-norm



Table 6
The maximum and minimum of the moving Gaussian pulse with velocity ~u ¼ ð2; 2Þs

Time step Exact solution FS-ELLAM FS-CDM FS-USDM

Max. Min. Max. Min. Max. Min. Max. Min.

Dt ¼ 1
10 0.9615 0.0 0.9619 0.0 0.1608 0.0 0.1548 0.0

Dt ¼ 1
40 0.9615 0.0 0.9615 0.0 0.3493 0.0 0.3101 0.0

Dt ¼ 1
100 0.9615 0.0 0.9615 0.0 0.5511 0.0 0.4540 0.0
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are 1.0257 · 10�3 and 6.7770 · 10�4 but the FS-CDM and the FS-USDM only obtain accuracies of
8.5529 · 10�1 and 8.5693 · 10�1 in L1-norm and of 1.5580 · 10�1 and 1.5625 · 10�1 in L2-norm, respectively.

Another advantage of our FS-ELLAM is that it can obtain high accuracy even when using large time step
sizes while the FS-CDM and the FS-USDM strongly depend on small time step sizes. We show this conclusion
by propagating the Gaussian hump to time t = 0.2 with different time step sizes Dt = 1/10,1/40 and 1/100.
The deviation of the initial Gaussian pulse is chosen as r0 = 0.1. The numerical results for D = 0.001 are
shown in the surfaces and contour plots in Fig. 3. Meanwhile, we also compare the computed peak values
of these numerical methods in Table 6. The FS-ELLAM has excellent approximations even with large time
step sizes. For example, with Dt = 1/10, the computed maximum of the FS-ELLAM approximation is
0.9619 where the maximum of exact solution is 0.9615, but the maximum of the FS-CDM approximation
is only 0.1608 and the FS-USDM approximation only reaches to 0.1548. Both the FS-CDM and the FS-
USDM lose most of the peak as shown in Table 6.

Next, we consider the velocity field with different components Vx = 5 and Vy = 0.5 and with the ratio
|Vx|/|Vy| of 10. We show the surfaces and contour plots of the three numerical methods and the exact solu-
tions at three time levels t = 0.0, 0.1 and 0.2. In this experiment, the initial deviation is chosen as r0 = 0.1
and the diffusion coefficient is chosen as D = 0.001. The spatial step sizes are taken as Dx = Dy = 1/100 and
the time step size is taken as Dt = 1/10. In Fig. 4, figures (ii) are the surfaces and contour plots of our FS-
ELLAM, figures (iii) and figures (iv) are ones of the FS-CDM and the FS-USDM while figures (i) are from
the exact solution. Due to non-equal velocity components in x-direction and y-direction, the moving
Gaussian hump does not propagate along the diagonal but moves much faster along x-direction than along
y-direction. From these figures, it is clear that along x-direction where the velocity is much larger, the mov-
ing Gaussian humps of the FS-CDM and the FS-USDM badly deform the shape at time t = 0.1 and 0.2
while along y-direction, due to the small velocity, the moving Gaussian humps of these two methods do not
distort much. However, the moving Gaussian humps of the FS-ELLAM (see figures (ii)) do not perform
deformation of the shape, which are same as those of the exact Gaussian humps (see figures (i)). Thus,
our FS-ELLAM is robust for the convection-dominated diffusion problem of the moving Gaussian hump.
Moreover, the maximum and minimum values of the case with two non-equal velocity components are
shown in Table 7, in which similar results are obtained as those in Tables 4 and 6 for the case with
two equal velocity components.

In the following part of this subsection, we will show the comparison of errors and ratios of convergence in
both time and space of the FS-ELLAM, the FS-CDM and the FS-USDM for solving the moving Gaussian
pulse problem. Table 8 shows the errors and ratios of convergence in time. The velocity field is~u ¼ ð6; 6Þs, the
diffusion coefficient is chosen as D = 0.001. The initial location and deviation are (x0, y0) = (0.3, 0.3) and
r0 ¼

ffiffiffi
2
p

=20, respectively. We simulate the problem on the spatial domain X = [0, 2] · [0, 2] and the time per-
iod T = 0.2. To obtain the ratio of convergence in time, we take the small spatial step sizes Dx = Dy = 1/200
and the time step sizes Dt = 1/10, 1/20, 1/30, 1/40, 1/50 and 1/60. In Table 8, it is clearly shown that the FS-
ELLAM has more than first-order ratio of convergence in time while both the FS-CDM and the FS-USDM
have very low ratios of less than 0.2. Moreover, we can see that the FS-ELLAM has very high accuracy even
with very large time step sizes. For example, when using Dt = 1/10, the FS-ELLAM only produces an error of
1.7341 · 10�3 in L1-norm and an error of 1.4250 · 10�4 in L2-norm while the errors of the FS-CDM are
9.0041 · 10�1 in L1-norm and 1.1623 · 10�1 in L2-norm, and the errors of the FS-USD are 9.0084 · 10�1

in L1-norm and 1.1628 · 10�1 in L2-norm, respectively.



Fig. 4. The surfaces and contour plots of the moving Gaussian pulse with diffusion D = 0.001 and velocity ~u ¼ ð5; 0:5Þs.
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Table 7
The maximum and minimum of the moving Gaussian pulse with velocity ~u ¼ ð5; 0:5Þs

Time step Exact solution FS-ELLAM FS-CDM FS-USDM

T Max. Min. Max. Min. Max. Min. Max. Min.

0.1 0.9804 0.0 0.9806 0.0 0.3103 0.0 0.3038 0.0
0.2 0.9615 0.0 0.9619 0.0 0.1502 0.0 0.1450 0.0

Table 8
The errors and ratios in time of the Gaussian pulse with velocity ~u ¼ ð6; 6Þs

Dt 1/10 1/20 1/30 1/40 1/50 1/60

FS-ELLAM
L1-error 1.7341E�3 8.5107E�4 5.4607E�4 3.9207E�4 2.9907E�4 2.3607E�4
Ratio – 1.0268 1.0944 1.1516 1.2133 1.2974
L2-error 1.4250E�4 6.9798E�5 4.4842E�5 3.2246E�5 2.4664E�5 1.9632E�5
Ratio – 1.0297 1.0913 1.1458 1.2015 1.2518

FS-CDM
L1-error 9.0041E�1 8.7441E�1 8.4987E�1 8.2671E�1 8.0481E�1 7.8408E�1
Ratio – 0.0423 0.0702 0.0960 0.1203 0.1431
L2-error 1.1623E�1 1.1108E�1 1.0650E�1 1.0234E�1 9.8528E�2 9.5016E�2
Ratio – 0.0654 0.1038 0.1385 0.1701 0.1990

FS-USDM
L1-error 9.0084E�1 8.7601E�1 8.5325E�1 8.3235E�1 8.1309E�1 7.9526E�1
Ratio – 0.0403 0.0649 0.0862 0.1049 0.1216
L2-error 1.1628E�1 1.1136E�1 1.0710E�1 1.0332E�1 9.9936E�2 9.6882E�2
Ratio – 0.0624 0.0968 0.1249 0.1492 0.1702

D. Liang et al. / Journal of Computational Physics 221 (2007) 198–225 217
In order to compare the errors and ratios of convergence in space for the three method, we use a small
time step size Dt = 1/60 for the FS-ELLAM and even a much smaller time step size Dt = 1/10000 for both
the FS-CDM and the FS-USDM. The spatial step sizes are taken as Dx = Dy = 1/10, 1/20, 1/30, 1/40 and
1/50. Table 9 shows the results of these three methods for the moving Gaussian pulse problem with diffu-
sion coefficient D = 0.001. From the table, we can see clearly that the FS-ELLAM has a ratio that is larger
than second order in space while the FS-CDM has only a ratio of first order and the FS-USDM has a much
lower order (about 0.2). For example, with the spatial step sizes Dx = Dy = 1/50, the ratio of the
Table 9
The errors and ratios in space of Gaussian pulse with velocity ~u ¼ ð6; 6Þ
Dx = Dy 1/10 1/20 1/30 1/40 1/50

FS-ELLAM
L1-error 1.2592E�2 7.5119E�3 3.2159E�3 1.6639E�3 9.4792E�4
Ratio – 0.7452 2.0923 2.2904 2.5215
L2-error 1.3389E�3 6.1372E�4 2.6044E�4 1.3510E�4 7.7250E�5
Ratio – 1.1253 2.1140 2.2817 2.5049

FS-CDM
L1-error 8.0702E�1 6.4143E�1 4.8282E�1 3.9162E�1 3.1793E�1
Ratio – 0.3313 0.7006 0.7277 0.9343
L2-error 1.4101E�1 1.0630E�1 7.5912E�2 5.3398E�2 3.8446E�2
Ratio – 0.4076 0.8303 1.2228 1.4721

FS-USDM
L1-error 8.8672E�1 8.5065E�1 8.1778E�1 7.8770E�1 7.6008E�1
Ratio – 0.0599 0.0972 0.1302 0.1599
L2-error 1.0898E�1 1.0398E�1 9.9156E�2 9.4532E�2 9.0276E�2
Ratio – 0.0678 0.1171 0.1659 0.2064
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FS-ELLAM in L1-norm reaches 2.5215 while the ratios of the FS-CDM and the FS-USDM in L1-norm
are only 0.9343 and 0.1599, respectively. For the moving Gaussian hump problem, the FS-CDM and the
FS-USDM cannot obtain good ratios even when using the very small time step size Dt = 1/10000. We
can also see that even with the larger spatial step sizes Dx = Dy = 1/30, the FS-ELLAM still obtains a sec-
ond order ratio. Thus, the FS-ELLAM is much more suitable for the convection-dominated diffusion prob-
lem of the moving Gaussian hump.

Finally, in the last part of this subsection, we compare the accuracies and CPU times of our FS-ELLAM,
the two-dimensional ELLAM method (without splitting) (2D ELLAM), the two-dimensional central differ-
ence method with Euler backward time difference (2D CDM), the two-dimensional upstream difference
method with Euler backward time difference (2D USDM), the FS-CDM, and the FS-USDM. The
FS-ELLAM, the FS-USDM and the FS-CDM lead to a series of tridiagonal systems along x-direction and
y-direction, which are solved by the Thomas algorithm. The 2D ELLAM, the 2D USDM and the 2D
CDM yield relatively large algebraic equation systems on the two-dimensional domain, which are solved
by the preconditioned conjugate gradient square algorithm (PCGS) in experiments. All computations and
measurements are taken on a DELL poweredge server 2800 with Dual 3.2G Xeon CPU and 2G memory.

We consider the moving Gaussian hump problem on domain X = [0, 2] · [0, 2]. The initial Gauss hump is
located at (x0, y0) = (0.5, 0.5). The velocity field is taken as ~u ¼ ð1; 1Þs. The diffusion coefficient is
D = 2.5 · 10�4, and the initial deviation is r0 = 0.02. Table 10 shows the errors of numerical solutions (at
t = 1.0) obtained by the different methods with different step sizes. From the table, we can see that for the
moving Gauss hump with the small diffusion coefficient D = 2.5 · 10�4, the 2D ELLAM and the FS-ELLAM
have similar high accuracies when using the step sizes Dt = 1/30 and Dx = Dy = 1/90. The errors of the 2D
ELLAM are 3.6520 · 10�3 in L1-norm and 1.3600 · 10�4 in L2-norm and the errors of the FS-ELLAM
are 4.7607 · 10�3 in L1-norm and 1.6168 · 10�4 in L2-norm. Moreover, when using the large step sizes
Dt = 1/10 and Dx = Dy = 1/60, the FS-ELLAM still has high accuracy like the 2D ELLAM. The errors of
the FS-ELLAM are 7.4309 · 10�3 in L1-norm and 2.5837 · 10�4 in L2-norm and those of the 2D ELLAM
are 4.2224 · 10�3 in L1-norm and 1.9560 · 10�4 in L2-norm. As shown, the FS-ELLAM and the 2D ELLAM
solutions have similar small errors even with large step sizes. The FS-ELLAM is very accurate, and keeps the
advantage of the 2D ELLAM.

In Table 10, we also show the results of the 2D CDM, the 2D USDM, the FS-CDM and the FS-USDM.
Even using a very small time step size Dt = 1/1000, the 2D CDM and the 2D USDM have errors of
2.7962 · 10�1 and 4.1365 · 10�1 in L1-norm, respectively, while the FS-ELLAM with a large time step size
Dt = 1/10 still has a much smaller error of 7.4309 · 10�3 in L1-norm. Also, the losses of solutions of the
2D CDM and the 2D USDM at the peaks are more than 62% and 90%, respectively (see maximum values
in the table). Although the 2D CDM solutions lose less at the peak that those of the 2D USDM, they still
suffer oscillations (e.g., the minimum value of 2D CDM solution with Dt = 1/1000 becomes �0.0480 due to
oscillation). The 2D USDM solutions avoid oscillation but smear the hump badly. The errors of the FS-
CDM and the FS-USDM are larger than those of the 2D CDM and the 2D USDM, respectively.

Now we compare the CPU time for these methods. We consider a much smaller diffusion coefficient
D = 10�4. The domain is X = [0, 3] · [0, 3], the velocity field is ~u ¼ ð1; 1Þs, the initial deviation is r0 = 0.02,
and the initial Gauss hump is at (x0, y0) = (0.5, 0.5). In this experiment, we use spatial step sizes
Dx = Dy = 1/60 and a large time step size Dt = 1/10 for the 2D ELLAM and the FS-ELLAM. We vary the
spatial step sizes from Dx = Dy = 1/60 to Dx = Dy = 1/100 and the time step sizes from Dt = 1/100 to
Dt = 1/3000 for the 2D CDM, the 2D USDM, the FS-CDM and the FS-USDM in order to get suitable
approximation results for comparison. In Table 11, we present the minimum and maximum values of the exact
solution, the minimum and maximum values of numerical solutions obtained by numerical methods, the CPU
time used per time step by each method, and the overall CPU time consumed by each method at time t = 2.0.

In Table 11, the 2D ELLAM and the FS-ELLAM obtain maximum values of 0.4863 and 0.4849, respec-
tively, which are good approximations to the exact maximum value of 0.5 when using a large time step size
Dt = 1/10. In comparison of CPU times, the 2D ELLAM uses a CPU time of 0.373 s per time step and an
overall CPU time of 7.83 s, however, our FS-ELLAM reduces the CPU time to only 0.049 s per time step
and only consumes an overall CPU time of 1.03 s. The FS-ELLAM is much faster than the 2D ELLAM while
still obtaining a similar high accuracy of approximation.



Table 10
Comparison of errors of different methods with D = 2.5 · 10�4 at t = 1.0

Dt Dx = Dy L1-error L2-error Max. value Min. value

Exact solution N/A N/A N/A N/A 0:444�4 0.0

FS-ELLAM 1
10

1
60 7.4309E�3 2.5837E�4 0.4370 0.0

1
30

1
90 4.7607E�3 1.6168E�4 0.4397 0.0

2D ELLAM 1
10

1
60 4.2224E�3 1.9560E�4 0.4402 0.0

1
30

1
90 3.6520E�3 1.3600E�4 0.4408 0.0

2D CDM 1
100

1
60 3.7446E�1 1.9839E�2 0.0768 �0.0166

1
200

1
60 3.5798E�1 1.9091E�2 0.0977 �0.0256

1
400

1
60 3.4293E�1 1.8814E�2 0.1216 �0.0390

1
1000

1
60 3.3162E�1 1.9752E�2 0.1522 �0.0613

1
100

1
90 3.6115E�1 1.9089E�2 0.0869 �0.0066

1
200

1
90 3.3608E�1 1.7587E�2 0.1150 �0.0138

1
400

1
90 3.0925E�1 1.6107E�2 0.1483 �0.0252

1
1000

1
90 2.7962E�1 1.5190E�2 0.1949 �0.0480

2D USDM 1
100

1
60 4.2892E�1 2.2423E�2 0.0156 0.0

1
200

1
60 4.2631E�1 2.2223E�2 0.0182 0.0

1
400

1
60 4.2440E�1 2.2077E�2 0.0201 0.0

1
1000

1
60 4.2292E�1 2.1964E�2 0.0215 0.0

1
100

1
90 4.2409E�1 2.2062E�2 0.0204 0.0

1
200

1
90 4.1988E�1 2.1741E�2 0.0246 0.0

1
400

1
90 4.1650E�1 2.1485E�2 0.0280 0.0

1
1000

1
90 4.1365E�1 2.1272E�2 0.0307 0.0

FS-CDM 1
100

1
60 4.0909E�1 2.0971E�2 0.0368 �1.2E�4

1
200

1
60 3.8475E�1 1.9370E�2 0.0652 �0.0034

1
400

1
60 3.6052E�1 1.8341E�2 0.1031 �0.0190

1
1000

1
60 3.4166E�1 1.9295E�2 0.1467 �0.0531

1
100

1
90 4.0819E�1 2.0885E�2 0.0370 �1.8E�7

1
200

1
90 3.7917E�1 1.8866E�2 0.0675 �2.0E�4

1
400

1
90 3.4045E�1 1.6485E�2 0.1130 �0.0054

1
1000

1
90 2.9644E�1 1.4961E�2 0.1810 �0.0336

FS-USDM 1
100

1
60 4.2997E�1 2.2503E�2 0.0146 0.0

1
200

1
60 4.2676E�1 2.2257E�2 0.0178 0.0

1
400

1
60 4.2455E�1 2.2088E�2 0.0200 0.0

1
1000

1
60 4.2295E�1 2.1967E�2 0.0215 0.0

1
100

1
90 4.2631E�1 2.2223E�2 0.0183 0.0

1
200

1
90 4.2096E�1 2.1818E�2 0.0236 0.0

1
400

1
90 4.1691E�1 2.1515E�2 0.0276 0.0

1
1000

1
90 4.1374E�1 2.1279E�2 0.0307 0.0
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The FS-CDM, the FS-USDM, the 2D CDM and the 2D USDM work very badly in the aspect of CPU
times. For example, with a small time step Dt = 1/500 and small spatial steps Dx = Dy = 1/60, the 2D
CDM and the FS-CDM solutions have maximum values of only 0.0856 and 0.0695 and negative minimum
values of �0.0334 and �0.0149, respectively, which are excessively overdamped. Meanwhile, the 2D CDM
solution needs a much longer overall CPU time of 84.55 s and the FS-CDM solution needs an overall
CPU time of 24.10 s. Both are much longer than those used by the FS-ELLAM and the 2D ELLAM. Even
with a very small time step size Dt = 1/1000, the 2D CDM and the FS-CDM solutions have only maximum
values of 0.1029 and 0.0963 and negative minimum values of �0.0744 and �0.0665, respectively. The maxi-
mum values are still very diffusive comparing to the exact maximum value of 0.5.

For observing the improvement of numerical solutions, we also reduce the spatial step sizes to
Dx = Dy = 1/100 and the time step size to Dt = 1/3000. Both the 2D CDM and the FS-CDM have essentially
no improvement in accuracy, however, the overall CPU times have been significantly increased to 1007.16 s
and 404.80 s, respectively. Due to the upstream technique, both the 2D USDM and the FS-USDM are



Table 11
Comparison of CPU times of different methods with D = 10�4 at t = 2.0

Dt Dx = Dy Max. value Min. value CPU (s)/each step Overall CPU

Exact solution N/A N/A 0.5000 0.0 N/A N/A
FS-ELLAM 1

10
1

60 0.4849 0.0 0.049 1.03

2D ELLAM 1
10

1
60 0.4863 0.0 0.373 7.83

2D CDM 1
100

1
60 0.0513 �0.0144 0.210 42.30

1
200

1
60 0.0646 �0.0213 0.115 46.09

1
500

1
60 0.0856 �0.0334 0.084 84.55

1
1000

1
60 0.1029 �0.0467 0.071 143.31

1
1000

1
100 0.1466 �0.0425 0.208 417.82

1
2000

1
100 0.1754 �0.0620 0.179 717.54

1
3000

1
100 0.1906 �0.0744 0.168 1007.16

2D USDM 1
200

1
60 0.0093 0.0 0.119 47.54

1
500

1
60 0.0106 0.0 0.086 86.34

1
1000

1
60 0.0112 0.0 0.078 156.62

1
1000

1
100 0.0176 0.0 0.241 483.99

1
2000

1
100 0.0184 0.0 0.207 830.94

1
3000

1
100 0.0186 0.0 0.142 854.13

FS-CDM 1
100

1
60 0.0192 �1.7559E�5 0.024 4.84

1
200

1
60 0.0361 �0.0010 0.024 9.66

1
500

1
60 0.0695 �0.0149 0.024 24.10

1
1000

1
60 0.0963 �0.0362 0.024 48.33

1
1000

1
100 0.1246 �0.0204 0.069 137.93

1
2000

1
100 0.1664 �0.0493 0.066 263.19

1
3000

1
100 0.1848 �0.0665 0.067 404.80

FS-USDM 1
200

1
60 0.0091 0.0 0.023 9.10

1
500

1
60 0.0105 0.0 0.023 22.85

1
1000

1
60 0.0111 0.0 0.023 45.69

1
1000

1
100 0.0175 0.0 0.063 126.37

1
2000

1
100 0.0183 0.0 0.063 252.93

1
3000

1
100 0.0186 0.0 0.065 399.08
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oscillation free but both solutions are much more diffusive. With the small time step size Dt = 1/500, the 2D
USDM and the FS-USDM have only maximum values of 0.0106 and 0.0105, respectively. The 2D USDM and
the FS-USDM still need much more overall CPU times of 86.34 s and 22.85 s, respectively. Thus, from Table
11, we can see that the FS-ELLAM requires much less CPU time compared to the ELLAM while still obtain-
ing the same accuracy of approximation. The other methods, the 2D CDM, the FS-CDM, the 2D USDM and
the FS-USDM, are not comparable with the FS-ELLAM in accuracy and CPU time.

4.3. The moving sharp front

In the last subsection, we compute the moving steep front problem with our FS-ELLAM. The numerical
results show that the FS-ELLAM simulates the steep front very well even if the time step size taken is very
large. The FS-CDM and the FS-USDM give either a too wide representation of the steep front or obvious
oscillations near the front.

Example 4. We consider the following convection–diffusion problem on the spatial domain X = [0, 1] · [0, 1]:
oc
ot
þrð~ucÞ � rðDrcÞ ¼ 0; ðx; y; tÞ 2 X� ð0; T �; ð44Þ

cðx; y; 0Þ ¼ c0ðx; yÞ; ðx; yÞ 2 X; ð45Þ
cð0; y; tÞ ¼ 1; y 2 ½0; 1�; cðx; 0; tÞ ¼ 1; x 2 ½0; 1�; t 2 ð0; T �; ð46Þ
ocð1; y; tÞ

ox
¼ 0; y 2 ½0; 1�; ocðx; 1; tÞ

oy
¼ 0; x 2 ½0; 1�; t 2 ð0; T �; ð47Þ



Fig. 5. The surfaces and contour plots of the moving sharp front by different numerical methods.
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Fig. 6. The comparison of solution curves of different numerical methods on a sectional plane.
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Fig. 7. The comparison of the moving sharp front with inflow boundary condition g(t) = 1 � 2sin t of different numerical methods on a
sectional plane.
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where the initial value c0(x, y) is given as
c0ðx; yÞ ¼
1; 0 6 x; y 6 0:2;

0; otherwise

�
ð48Þ
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and the diffusion coefficient and the velocity are taken as D = 0.001 and~u ¼ ð1; 1Þs. Since there is a jump in the
initial function, a moving sharp front will occur at the jump as the time increases. This makes it difficult to
simulate numerically the solution by the traditional numerical methods.

The surfaces and contour plots of the approximate solutions at time t = 0.1 computed by the FS-ELLAM,
the FS-CDM, the FS-USDM and the reference analytical solution are presented in Fig. 5. The spatial step
sizes are taken as Dx = Dy = 1/100. The approximation solution of our FS-ELLAM (Fig. 5c) is obtained with
a time step size Dt = 1/50 while the solutions of the FS-CDM and the FS-USDM (Fig. 5a and b) are both
obtained with a smaller time step size Dt = 1/1000. The reference analytical solution, in Fig. 5d, is computed
by the two-dimensional ELLAM (without splitting) with small step sizes Dx = Dy = 1/200 and Dt = 1/100.
From Fig. 5, it is clear that the FS-CDM performs oscillation near the front and the FS-USDM overcomes
oscillation with the upstream technique but smears the front even when using the smaller time step size. Par-
ticularly, from the contour plots in Fig. 5(ii), the numerical solution of the FS-CDM does not decay mono-
tonically near the sharp front, instead, it oscillates between 1.05 and 0.97 before the front and the width of the
front is very large. The FS-USDM yields a solution with excessive numerical diffusion, and its front width is
larger than that of the reference solution. Our FS-ELLAM approximates the moving sharp front much more
accurately without oscillation and smearing in Fig. 5c, which is in excellent agreement with the reference ana-
lytical solution in Fig. 5d. Furthermore, the detailed comparison of the solution curves of these three numer-
ical solutions and the reference analytical solution on a sectional plane along x-direction at y = 1 is shown in
Fig. 6. The results show clearly that the FS-ELLAM scheme simulates the front correctly and accurately while
the FS-CDM and the FS-USDM perform oscillation or smear the front.

Example 5. Furthermore, we consider the moving sharp front problem with more complicated boundary
conditions: c(0, y, t) = 1 � 2 sin(t), y 2 [0, 1], c(x, 0, t) = 1 � 2sin(t), x 2 [0, 1], t 2 (0, T], and ocð1;y;tÞ

ox ¼
0; y 2 ½0; 1�; ocðx;1;tÞ

oy ¼ 0; x 2 ½0; 1�; t 2 ð0; T �. The diffusion coefficient is D = 0.001 and the velocity is

~u ¼ ð1; 1Þs. The initial value is same as Example 4.

In Fig. 7 the comparison of the numerical solution curves of these numerical methods at t = 0.1 is shown
along a sectional plane of x-direction at y = 1. The spatial step sizes are Dx = Dy = 1/100. The FS-ELLAM
solution is obtained with a time step size Dt = 1/50, and the FS-CDM and the FS-USDM solutions are both
obtained with a smaller time step size Dt = 1/1000. The reference analytical solution is computed by the two-
dimensional ELLAM (without splitting) on the fine mesh Dx = Dy = 1/200 and Dt = 1/100. The FS-CDM
performs oscillation and the FS-USDM overcomes oscillation by the upstream technique but smear the front.
It can been seen clearly that the FS-ELLAM approximates the sharp front much more accurately without
oscillation and smearing.
5. Conclusion

We developed a fractional step ELLAM algorithm (FS-ELLAM) for two-dimensional convection–diffusion
problems in this paper. The method reduces the high-dimensional problems to a series of uncoupled one-
dimensional problems in each time step interval, in which one-dimensional Eulerian–Lagrangian localized
adjoint method (ELLAM) is used to solve the one-dimensional splitting equations.

The developed FS-ELLAM approach takes the attractive advantages of both the ELLAM method and
the fractional step technique. It reduces computational complexities, large memory requirements, and long
computation durations due to the application of the splitting technique. By inheriting the feature of the
ELLAM method, it significantly reduces temporal truncation errors and generates accurate numerical solu-
tions even when large time and coarse spatial step sizes are used in computation. It effectively eliminates
non-physical oscillation or excessive numerical dispersion and treats boundary conditions in a natural way.
The numerical experiments included convection–diffusion problems with source terms, moving Gaussian
hump problems and moving sharp front problems. At each time level, the FS-ELLAM approach applied
the one-dimensional ELLAM method to solve the x-directional and y-directional splitting problems. The cor-
responding algebraic equation systems are symmetric and tridiagonal systems which can be easily solved.
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Numerical results and comparisons indicate that the proposed FS-ELLAM is very efficient and suitable to
solve the convection-dominated diffusion problems. The ELLAM scheme greatly eliminates numerical oscil-
lation by using the tracking technique along the characteristics. We would like to mention that a monotonic
ELLAM scheme has recently been studied by Neubauer and Bastian in [20].

The algorithm of FS-ELLAM developed in this paper can be easily extended to three- and higher-dimen-
sional convection–diffusion problems with more general boundary conditions. The procedure can be solved by
a parallel computing system.
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